Phrasebook
Now that you know all the names for mathematical symbols, it's high time to use them to build up longer phrases! Click on the name of the folder of your interest to read and listen to complex phrases from all areas of mathematics..
Słowniczek Wyrażeń
Teraz gdy już znasz wyrazy opisujące matematyczne symbole, nadszedł czas na składanie ich w dłuższe wypowiedzi! Kliknij na tytuł katalogu który Cię interesuje, żeby czytać i słuchać skomplikowanych wyrażeń z różnych dziedzin matematyki.
$a=b$
$a\neq b$
$a<b$
$a\leq b$
$a>b$
$a\geq b$
$a+b<c$
$\dfrac{a}{b}=c$
$\dfrac{a\cdot b^2}{b}=ab$
$\dfrac{a+b^2}{c}$
$\dfrac{\sqrt{a+b^2}}{c}$
$(a+b)^2=c$
$\dfrac{a}{\infty }=0$
$a^{-10}$
$a^n$
$\sqrt{a}$
$\sqrt[5]{a}$
$a'$
$a"$
$a'''$
$a_1$
$a_2$
$a_n$
$2:3$
$2:3=4:6$
$1/2$
$1/3$
$1/4$
$3/4$
$2/5$
$25/27$
$2\dfrac{1}{2}$
$3\dfrac{1}{6}$
$0.5$
$2.345$
$-1.004$
$y=f(x)$
$y=\sin x $
$y=\cos x $
$y=\tan x $
$y={\rm ctan}\; x $
$y=\arcsin x$
$y=\arccos x$
$y=\arctan x$
$y=e^x$
$y=\log x$
$y=log_3 x$
$y=\ln x$
$\displaystyle\lim_{x\rightarrow \infty}f(x)=5$
$\displaystyle\lim_{x\rightarrow \pi }\sin x=0$
$\displaystyle\lim_{x\rightarrow 7^{+}}f(x)=3$
$\displaystyle\lim_{x\rightarrow 2^{-}}f(x)=1$
$\dfrac{d^2y}{dx^2}$
$\dfrac{d^ny}{dx^n}$
$\dfrac{\partial ^2z}{\partial x^2}+\dfrac{\partial ^2z}{\partial y^2}=0$
$\displaystyle\int f(x)dx$
$\displaystyle\int_{a}^{b} f(x)dx$
$\displaystyle\int_{a}^{b} \dfrac{dy}{\sqrt{1-y^2}}$
$\displaystyle\iint_{D} f(x,y)dxdy$
$\displaystyle\iiint_{T} f(x,y,z)dxdydz$
$V=u \sqrt{\sin ^2 i+\cos ^2 i}=u$
capital V equals u square root of sine square i plus cosine square i equals u
$4c+W_3+2n_1a'R_n=33\dfrac{1}{3}$
$P_{cr}=\dfrac{\pi ^2E_l}{4l^2}$
capital P sub c r equals pi square times capital E sub l all over four l square
$\left[\left( x+a\right)^p-\sqrt[r]{x}\right]^{-q}-s=0$
$(D-r_1)[(D-r_2)y]=(D-r_2)[(D-r_1)y]$
$u=\int f_1(x)dx+\int f_2(y)dy$
$a_v=\dfrac{m\omega \omega ^2\alpha ^2}{[rp^2m^2+R_2(R_1+\frac{\omega ^2\alpha ^2}{rp})]}$
$K=\displaystyle\max_{j}\sum_{i=1}^{n} |a_{ij}(t)|\quad (t\in [a,b];j=1,2,\ldots ,n)$
$\displaystyle\lim_{n\rightarrow \infty }\int_{\tau }^{t}\{f[s,\psi_n(s)]+\Delta _n(s)\}ds=\int_{\tau }^{t}f[s,\psi (s)]ds$
$f(z)=\widehat{\psi }+\Theta |z|^{-1}\quad (|z|\rightarrow \infty , arg z=\gamma )$
$D_{n-1}=\displaystyle\prod_{s=0}^n(1-x^2_s)^{\epsilon-1}$