Phrasebook

Now that you know all the names for mathematical symbols, it's high time to use them to build up longer phrases! Click on the name of the folder of your interest to read and listen to complex phrases from all areas of mathematics..

Słowniczek Wyrażeń

Teraz gdy już znasz wyrazy opisujące matematyczne symbole, nadszedł czas na składanie ich w dłuższe wypowiedzi! Kliknij na tytuł katalogu który Cię interesuje, żeby czytać i słuchać skomplikowanych wyrażeń z różnych dziedzin matematyki.

 

$V=u \sqrt{\sin ^2 i+\cos ^2 i}=u$

 capital V equals u square root of sine square i plus cosine square i equals u


$4c+W_3+2n_1a'R_n=33\dfrac{1}{3}$

 four c plus capital W third plus two n first a prime capital R sub n equals thirty three and one third


$P_{cr}=\dfrac{\pi ^2E_l}{4l^2}$

 capital P sub c r equals pi square times capital E sub l all over four l square


$\left[\left( x+a\right)^p-\sqrt[r]{x}\right]^{-q}-s=0$

 x plus a in round brackets to the power p minus the r'th root of x all in square brackets to the power of minus q minus s equals zero


$(D-r_1)[(D-r_2)y]=(D-r_2)[(D-r_1)y]$

 open round brackets, capital D minus r first, close the round brackets, open square and round brackets, capital D minus r second, close round brackets, by y, close square brackets, equals, open round brackets, capital D minus r second, close the round brackets, open square and round brackets, capital D minus r first, close the round brackets, times y, close the square brackets


$u=\int f_1(x)dx+\int f_2(y)dy$

 u is equal to the integral of f sub one of x multiplied by dx plus the integral of f sub two of x multiplied by dy


$a_v=\dfrac{m\omega \omega ^2\alpha ^2}{[rp^2m^2+R_2(R_1+\frac{\omega ^2\alpha ^2}{rp})]}$

 a sub v is equal to m omega, omega square alpha square divided by square brackets, r, p square m square plus capital R second, round brackets opened, capital R first plus omega square alpha square divided by r p, round and square brackets closed


$K=\displaystyle\max_{j}\sum_{i=1}^{n} |a_{ij}(t)|\quad (t\in [a,b];j=1,2,\ldots ,n)$

 capital K is equal to the maximum over j of the sum from i equals one to n of the modulus of a sub i j of t, where t lies in the closed interval a b and where j runs from one to n


$\displaystyle\lim_{n\rightarrow \infty }\int_{\tau }^{t}\{f[s,\psi_n(s)]+\Delta _n(s)\}ds=\int_{\tau }^{t}f[s,\psi (s)]ds$

 the limit, as n becomes infinite, of the integral of f of s and psi sub n of s plus delta n of s with respect to s, from tau to t, is equal to the integral of f of s and psi of s, with respect to s, from tau to t


$f(z)=\widehat{\psi }+\Theta |z|^{-1}\quad (|z|\rightarrow \infty , arg z=\gamma )$

 f of z is equal to psi hat plus capital theta times the modulus of z to minus first power, as the absolute value of z becomes infinite, with the argument of z equal to gamma


$D_{n-1}=\displaystyle\prod_{s=0}^n(1-x^2_s)^{\epsilon-1}$

 D sub n minus one of x equals the product fom s equal to zero to n of, parenthesis, one minus x sub s squared, close parenthesis, to the power of epsilon minus one